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The linear stability of a simple two-layer shear flow with an upper-layer potential 
vorticity front overlying a quiescent lower layer is investigated as a function of 
Rossby number and layer depths. This flow configuration is a generalization of 
previously studied flows whose results we reinterpret by considering the possible 
resonant interaction between waves. We find that instabilities previously referred to 
as ‘ageostrophic’ are a direct extension of quasi-geostrophic instabilities. 

Two types of instability are discussed : the classic long-wave quasi-geostrophic 
baroclinic instability arising from an interaction of two vortical waves, and an 
ageostrophic short-wave baroclinic instability arising from the interaction of a gravity 
wave and a vortical wave (vortical waves are defined as those that exist due to the 
presence of a gradient in potential vorticity, e.g. Rossby waves). Both instabilities are 
observed in oceanic fronts. The long-wave instability has length scale and growth rate 
similar to those found in the quasi-geostrophic limit, even when the Rossby number 
of the flow is O(1). 

We also demonstrate that in layered shallow-water models, as in continuously 
stratified quasi-geostrophic models, when a layer intersects the top or bottom bound- 
aries, that layer can sustain vortical waves even though there is no apparent potential 
vorticity gradient. The potential vorticity gradient needed is provided at the top (or 
bottom) intersection point, which we interpret as a point that connects a finite layer 
with a layer of infinitesimal thickness, analogous to a temperature gradient on the 
boundary in a continuously stratified quasi-geostrophic model. 

1. Introduction 
Observations of frontal instabilities in the ocean (e.g. Watts & Johns 1982; Barth 

1994) and laboratory experiments (Griffiths & Linden 1982; Griffiths, Killworth 
& Stern 1982) have motivated numerous studies of frontal instabilities within the 
framework of the shallow-water approximation (e.g. Killworth, Paldor & Stern 1984, 
hereafter referred to as KPS; Paldor & Ghil 1991). 

In geophysical flows, fronts are identified as regions of rapid changes in the surface 
density or isopycnal depth. In the ocean, such density changes occur over horizontal 
distances of the order of the deformation radius, and are associated with jets and even 
more rapid changes in potential vorticity (PV) (Hall & Fofonoff 1993). We will argue 
below that a density front can be viewed as a PV front. While the quasi-geostrophic 
approximation (QG) is not strictly applicable for density fronts because of the 0(1) 
change in the depth of isopycnal surfaces and the 0(1) Rossby number of the flow 
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(in standard notation the Rossby number is E = U / L f ,  where U is the flow velocity, 
L its horizontal scale and f the Coriolis frequency), PV fronts can be modelled in 
this approximation (e.g. Pratt & Stern 1986). A question that arises, and that we will 
attempt to address here, is how the two approximations, namely QG and shallow 
water, compare in simulating PV fronts (or equivalently, density fronts) and their 
linear stability characteristics. 

The simplest shallow-water model of a density front consist of a lit- or 2-layer 
model in which the interface between the layers intersects the surface (an ‘outcropping 
front’). In particular, KPS observed that an outcropping front in a 2-layer model, 
with a quiescent lower layer and constant PV in the upper layer, displays a long-wave 
instability with a similar length scale and growth rate to instabilities found in a QG 
model. Because there was no obvious PV front, they classified this instability as 
‘ageostrophic’, i.e. involving dynamics not present in the QG approximation (see also 
Barth 1989, and Sakai 1988). We argue here that the instability observed in KPS (and 
others, such as Griffiths et al. 1982; Barth 1989; Swaters 1991) is quasi-geostrophic 
in nature, i.e. is the result of interaction of vortical waves. Vortical waves are defined 
as waves that exist due to the presence of a PV gradient (e.g. fi-plane and topographic 
Rossby waves). These are the only waves present in the QG approximation. 

Using Hayashi & Young’s (1987) analysis of instabilities as resulting from resonant 
interactions of neutral waves, we show that the KPS instability is a result of the 
resonance of two vortical waves, and thus involves dynamics that are present in QG 
instabilities. However, since the upper layer has no PV gradient, a question arises as 
to how the fluid can sustain a vortical wave. In order to answer this question, we 
examine the upper and lower boundaries. 

The role of the boundaries in QG instabilities is well established: for instance, in 
the Eady model the instability owes its existence to the temperature gradient imposed 
at the top and bottom boundaries. These boundaries are interpreted as &functions of 
PV (Bretherton 1966a). However, in shallow-water layered models of an outcropping 
front, the surface (or bottom) intersection point has not been recognized as a PV 
discontinuity. The free streamline of the outcropping front along which the upper 
layer vanishes can be regarded as the boundary between the upper layer and an 
infinitesimally thin layer of infinitely large PV. From the above argument it follows 
that in KPS’s model, a vortical wave can exist in the vanishing upper layer which has 
constant PV, and the necessary PV gradient exists at the intersection point. 

The richer dynamics found in the shallow-water approximation permit instabilities 
not found in the QG approximation, i.e. ageostrophic ones. These can arise, for 
example, from the interaction of waves that exist in QG models (vortical waves) 
with those not found in QG (such as gravity waves) as was shown by Sakai (1988) 
who found a Kelvin-Rossby wave instability. Here we demonstrate that a resonant 
interaction between a gravity wave and a vortical wave exists in the model investigated 
by KPS. 

Important conserved quantities in the analysis of linear instabilities in inviscid 
flows are the pseudo-momentum and pseudo-energy (Hayashi & Young 1987). It 
was suggested by Sakai (1988) that the different terms of the pseudo-momentum 
each correspond to a different physical mode (vortical waves us. gravity waves). One 
cannot use the frequency to differentiate between the modes as the gravity waves have 
Doppler-shifted frequencies similar to the vortical waves. Here, however, we show for 

t A 1 ;-layer model is a 2-layer model with either the upper or lower layer of infinite depth, also 
referred to as equivalent barotropic. 



Stability of a potential vorticity front 67 

PV front 

u,=o 

y = o  

UI 

FIGURE 1. Schematics of the height (a )  and velocity ( b )  fields of an upper-layer potential vorticity 
front. The upper-layer flow is geostrophic and has piecewise-constant PV, q I j  = f / H l j ,  where j 
denotes the side of the front (1 being south, y < 0), the H l j  denote the depth of the upper-layer at 
y + Tco respectively and the lower layer is quiescent. When H I *  = 0, the interface between the 
layers intersects the surface, resulting in an outcropping front. 

a simple case, first analysed by Williams (1991), that Sakai’s conjecture fails, i.e. there 
is no one-to-one correspondence between the various terms in the pseudo-momentum 
and the physical modes. Instead, by varying the Rossby number of the flow and 
following the instability to its QG limit, we can differentiate between vortical modes 
and gravity wave modes. 

The organization of the paper is as follows. Section 2 introduces the 2-layer 
shallow-water model which, by changing the Rossby number, spans configurations 
from a QG PV front to the outcropping front of KPS, and the linear stability problem 
is formulated. We then revisit previously published results from the 1 ;-layer limit of 
the model in $ 3. In $ 4 these results are used to distinguish between different resonant 
interactions observed in the 2-layer model. In $ 5 ,  we apply the analogy of PV and 
density fronts to the barotropic case of Griffiths et al. (1982). We discuss our findings 
and conclude in $6. 

2. Formulation of the model 
The problem we consider here is that of a surface geostrophic jet at the interface 

between two regions of constant PV but equal density p1 (figure 1). The upper layer, 
where the jet resides, overrides a quiescent lower layer of density p2 > p I .  We assume 
the fluid to be Boussinesq, hydrostatic, and to have a rigid lid on an f-plane, which 
we refer to as the shallow-water approximation. The momentum and continuity 
equations are 

(3, + ui . V ) U ~  + fi  x = -Vpi, (2.1) 

(2.2) hi, + v * (hill,) = 0, 
where the subscript i = 1 (2) denotes the upper (lower) layer, u = (u , v )  is the 
horizontal velocity vector, f is the Coriolis parameter, V is the horizontal differential 
operator and i is the vertical unit vector. The layer’s reduced pressure (pi, the pressure 
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divided by density) and depth (hi) are related by the hydrostatic equation: 
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g’Vh1 = -g’Vhz = V(pl - p2), (2.3) 

where g’ = g(p2 - pl)/pl is the reduced gravity. PV is conserved in each layer, 

The flow whose linear-stability characteristic we investigate is trapped at the inter- 
face between two semi-infinite regions of constant PV, ql j  = f /Hl j ,  where j denotes 
the side of this PV front (1 being south, y < 0), and H I ,  the fluid depth at y 4 f 00 

(figure 1). Requiring that the flow be x-independent, continuous both in layer depth 
and velocity, steady, geostrophic, u2 = 0, the upper-layer depth is 

and the geostrophic jet velocity is 

where 

are the jet maximum speed and the (different) deformation radii on each side of the 
front. 

We non-dimensionalize the governing equations similar to Williams ( 1  99 l), by 
transforming 

(2.7) 
UO = (g’H11) 1 /2 - (g’H1z)1’2 and %,J = (g’Hlj)1/2/f, 

where 

I9 = (H11 + H12) /2, & = (g’A)1/2 /f, 
and H is the y-averaged upper-layer depth and & the radius of deformation based on 
I?. The non-dimensional Rossby number, e = lUol/f&, is a measure of the strength 
and asymmetry of the flow. 

It is convenient to define the following non-dimensional variables : 

(2.10) 

so that the hydrostatic relation becomes 

V(W1 - w 2 )  = vq. (2.1 1) 

Q, and q j  are the scaled constant PV and interface displacement on either side of the 
front and yi is the scaled reduced pressure in each layer. 

The resulting non-dimensional governing equations ((2.1)-(2.2)) are 

€(at  + ui ‘V)Ui + k x uj = -vyi, (2.12) 

6 (qj,t + V * (qjul)) + Q i ’ V  * 111 = 0, (2.13) 
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E (qj,t + V * (vjuz)) - ( r  - Q7')V * ~2 = 0, 
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(2.14) 
and the non-dimensional PV is given by 

1 + €V x u1 1 + EV x u2 
r - Q T ~  - q . '  41 = , q 2  = 

Qi' + E q j  J J 
(2.15) 

where r = H T / H ,  the ratio of the total fluid depth to the mean upper-layer depth. 
Thus, the two parameters describing the flow are E and r .  

The non-dimensional mean-flow variables, denoted by an overbar, are calculated 
from (2.5)-(2.6), 

where a j  = &/&,. = Q)l2 so that 4 3 l / a j  2 0. The non-dimensional layer depths 
are given by 

1 - - 
hl = - + eij j and h2 = r - hl. 

Qi 
(2.17) 

From the definitions of E and Qj, Williams (1991) derived 

c = ~ / a l -  1/a2, ( 1 / a 1 ) ~  + (1/a2f2 = 2. (2.18) 

Without loss of generality we choose the north side (y > 0) to be shallower, H11 > H12 

(or a2 > al). 
Up to this point no assumption has been made about the magnitude of E, which, 

over the whole range of possible upper-layer PV distributions, varies from zero to a. Special cases of the PV-front model presented here were considered in the past: 
when e = 4, H12 = 0, so that hl = 0 for y > 0 in (2.5) is the outcropping (or density) 
front studied by KPS. The QG limit is E = 0. The above model in the limit r + 00 

(1 +-layer) was studied for e = 4 by Paldor (1983), for variable E by Williams (1991) 
and for E = 0 by Pratt & Stern (1986). 

In the limit E -+ 0, the potential vorticity can be expanded to the first order in E ,  

41 = 1 + 4v2w1 - (Wl  - w2)), ( r  - 1)q2 = 1 + E 

satisfying 

with the geostrophic advective flow 
(a, + 4 . g  a v) qr = 0 

A 

k x ~ i , ~  = - V W ~ ,  

(2.20) 

(2.21) 

which is the QG approximation (Pedlosky 1987). In this approximation the non- 
dimensional mean flow is given by (2.16)-(2.17) with a1 = c(2 = 1. We note that when 
E = 0 there is no flow, since then the dimensional hl = H12 = H22 is a constant. In 
the QG approximation, by setting the value of the PV to be different on each side of 
the front, the jet speed is 

(2.22) 
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Thus we can approximate the shallow-water PV front in the QG approximation by 
the choice of Uo. The approximation, of course, worsens with the increase in size of E .  

2.1. Linearized perturbation equation of a PV front 

In order to assess the linear stability of this flow we superimpose an infinitesimal, 
normal-mode, perturbation on the mean flow so that ui, ui and y i  all have the form 
6 = Re (&y)  + B(y)exp(ik(x - c t ) ) ) ,  i.e. the sum of an x-averaged mean flow (given 
in (2.16)-(2.17)) and a wave-like infinitesimal perturbation. Since we are considering 
an f-plane shallow-water model, the conditions for the hydrostatic balance to be 
applicable are that €H2/L2 << 1, which for the O(1) Rossby number model considered 
here, implies that our model is valid so long as k < & / H  (or in dimensional form 
k < l /R) .  

Linearizing the momentum and PV equations in the upper layer about the mean 
flow results in the following system: 

(2.23) 

(2.24) 

€(GI - C ) U I  + (EZi ly  - 1)61 = -I&, 

- k2c(U1 - c ) O ~  + ~1 = - I J I ~ ~ ,  

k261 + ulY = Q . (  1 W 2  - WI), (2.25) 
where 61 = ul/ik. In the lower layer, where there is no mean flow, substituting the 
linearized momentum equations into the linearized mass conservation equation gives 

and 

(2.26) 

We thus have a fourth-order system of ordinary differential equations with four 
unknowns and an eigenvalue, c. The solution we are seeking is required to vanish 
away from the front ( y  + fco,  thus we are restricting ourselves to solutions with 
finite energy per unit length of front). At the front ( y  = 0) the matching conditions 
differ between the cases E < $ and E = $, due to the vanishing of the upper layer in 
the latter case. For the non-outcropping PV front ( E  < $) the boundary conditions 
are that all the perturbation amplitudes, except u1, are continuous at y = 0. For the 
outcropping front ( E  = $), the upper-layer boundary is at y = 0 and the boundary 
condition there was derived by KPS based on the regularity of (2.23) at y = 0, so 
that 

€(Gl - C)UI  + W I  = 0. (2.27) 
Since in this case, the lower-layer solution for 1p2 at y > 0 is a decaying exponential 
(by (2.26)), continuity of 1p2 at y = 0 implies 

V2y + kW2 = 0. (2.28) 

Thus, the boundary conditions, as well as the mean flow, pass continuously from the 
non-outcropping to the outcropping front, and we can therefore expect the instability 
properties to also be continuous. The method of solution we employed to solve 
(2.23)-(2.26) with the above boundary conditions is presented in Appendix A. 

Because we are considering only trapped modes, the boundary conditions eliminate 
solutions representing free waves that are finite when y + +_a. Such gravity 
waves are free when their Doppler-shifted frequency (coo = k(c - U)) exceeds the 
effective Coriolis frequency, fef, = f + k - V x u/2 and are trapped (have a complex 
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FIGURE 2. (a) The upper- and ( b )  lower-1;-layer models that are used to interpret the instabilities 
present in the 2-layer model of figure 1. The jet structure of the upper-layer model is identical to 
that of the 2-layer model. Both 1;-layer models are stable to normal-mode perturbation, while the 
2-layer model is unstable. 

meridional wavenumber) where 00 < feff .  For trapped gravity waves that have a 
non-zero amplitude within the jet (where 00 > feff)  but decay outside the jet (where 
00 < fefr = f), the local mean-flow vorticity = k * V x lil (i.e. < = -El,, in our 
case) has to be negative. This occurs for all values of e on the south side of the 
PV front ( y  < 0). However, on the north side of the PV front the gravity waves are 
always free, except for the outcropping front (e = a), where these waves do not 
exist for y > 0. Thus trapped gravity waves can only be found for the outcropping 
front configuration. Trapped vortical waves, on the other hand, can be present in 
both layers and for all E., as is shown in the next section. 

3. Some relevant results from the 1;-layer models 
In order to interpret the instabilities of the 2-layer model, the wave-wave resonance 

that gives rise to the instabilities has to be elucidated (Hayashi & Young 1987; Sakai 
1988). We follow Sakai (1988) and decompose the 2-layer model into two 1;-layer 
models; one with an infinite bottom layer and the other with an infinite upper layer 
(figure 2). The lower-layer models are stable by Ripa's (1983) stability criteria for 
all E.. The upper-layer models are stable for all E. except when 4 > e2 > 0.4, where 
an instability arises from a resonant interaction of a gravity wave, that is free on 
the north side of the front, and a trapped vortical wave (Ford 1993). Our boundary 
conditions preclude such instabilities and the modes observed in the upper-layer 
models are stable for all e. The modes found in these models are expected to be 
similar, but not identical, to those of the 2-layer modes given that they represent the 
limit of the latter when a layer becomes infinite. An instability in the 2-layer model is 
expected when waves of the upper- and lower-layer models have a similar frequency, 
o = kc.  

3.1. Upper-layer modes 
The upper-layer model consists of (2.23)-(2.25) with y2 = 0 (figure 2a). The mean flow 
is identical to that of the 2-layer model (2.6). The modes and their dispersion relation 
(figure 3, bold lines) were studied previously for all e: Pratt & Stern (1986) studied 
the QG case ( E .  = 0), Williams (1991) studied it for 0 < e < &' and Paldor (1983) for 
the outcropping front ( E .  = 4). The eigenmodes associated with the different cases 
are depicted in figure 4(a-d). In particular the QG dispersion relation and eigenmode 
can be derived analytically ( E .  = 0 line in figures 3d and 4a), 

(3.1) o = k (1 - (k2  + 1)-'l2) , yl  = Ae-Blvl 
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FIGURE 3. The dispersion relation (DR) of the upper- and lower-1 ;-layer trapped modes. Bold lines 
are the DR of upper-layer modes, thin lines represent DR of lower-layer modes and the dashed line 
in (a, b )  is zero. (a) The outcropping front case of which ( b )  is a magnification of the short-wave 
region and (c) is a magnification of the long-wave one. Only the three gravest (in meridionai 
structure) lower-layer modes are shown. Where the DR of lower- and upper-layer modes approach 
each other an instability is expected. The heavy lines denote the boundaries beyond which free 
waves are found (Paldor 1983). (d )  The DR of the upper-layer modes and the gravest lower-iayer 
mode for three values of e. Notice the similarity between the DR of the QG and the outcropping 
front. 

where p z (k2  + 1)lI2 and A is the (arbitrary) infinitesimal amplitude of the perturba- 
tion. 

Sakai (1988) suggested the use of the pseudo-momentum to differentiate between 
gravity and Rossby waves in a baroclinic shear flow. We show in Appendix B that for 
the upper-layer model, Sakai's conjecture fails and we therefore use the continuity in 
structure of the eigenmodes and dispersion relation (DR) of the modes as E changes 
to differentiate between the vortical and gravity waves; in the QG limit only vortical 
waves are present. Thus we physically interpret the modes found by Paldor (1983) 
(e  = 4) as follows: the gravest mode is a vortical wave, since we can trace this 
mode from e = 0 (QG) to e = 4 in both DR and structure (figures 3d and 4a-c). 
The other modes found for f = 4 are trapped gravity waves that, as argued in $2, 
are unique to the outcropping fronts. The DR of the gravity waves emanates from 
the free-wave DR, 0 = - (1 + k 2 )  ''' (heavy line in figure 3a), and the eigenfunctions 
differ from those of the vortical waves, for example, in that the number of points 
where the eigenfunction vanishes increases with mode number (figure 4c-d; Paldor 
1983). 

As E is changed from zero the vortical mode loses the north-south symmetry it 
had in the QG model until its northern side disappears as the interface intersects 
(figure 4a-c). The DR curves of the vortical modes for different values of e all 
emanate from the origin, k = 0, they then spread apart from each other as k increases 
(figure 3d), but they have the same limit as k + co (not shown here, Williams 1991). 
For all e < 4 the PV gradient supporting the vortical modes is concentrated at 
y = 0, qly = d(y)(q12 - 411). Notice, however, that when E = 4 (outcropping front) 
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FIGURE 4. The eigenmode structure corresponding to different dispersion curves of figure 3 (same 
line pattern), for k = 1 and r = 4. (a-c) Upper-layer vortical modes with different values of E. ( d )  
The first gravity mode of the outcropping front. (e-g) The first lower-layer model vortical modes 
with different values of E. ( h )  The third lower-layer vortical mode of the outcropping front. The 
amplitudes are normalized with each modes maximum amplitude. 

the vortical mode exists even though the PV gradient in the upper layer apparently 
vanishes. Using the fact that the results are continuous as function of 6 we interpret 
the layer intersection point at y = 0, when E = $, as a PV discontinuity from 
the finite upper-layer PV for y < 0 to an infinitely thin layer with an infinite PV 
at y > 0. This provides the gradient necessary for the existence of a vortical wave. 
This interpretation of the PV front is similar to that which is used for continuously 
stratified QG models (Bretherton 1966~).  

3.2. Lower-layer modes 
The lower-layer model consists of (2.26) with y1 = 0 (figure 2b). We choose r = 4, 
so as to be consistent with the 2-layer profiles analysed in the next section. The 
only modes present are vortical modes owing to the variation in layer depth, with no 
mean flow; they are trapped in the area where the layer depth varies and are similar 
to topographic Rossby waves. Unlike the upper-layer model, more than one vortical 
mode exists in the lower layer. 

The DR (figure 3 4  and eigenmode structure (figure 4e-g) vary continuously as a 
function of e for a single mode. The phase speed (not shown) of different modes 
differs mostly at low wave numbers, while at large wave numbers the phase speed of 
all the modes asymptotes to zero. The structure of the different modes as a function 
of E involves a shift in the maximum amplitude to the south side and a loss of the 
symmetry found in QG (figure 4e-g). For a given E the modes vary in the number 
of times their amplitude is zero, having more such points as the frequency decreases 
(figure 4g, h). 

As with the upper model, the QG solution can be obtained analytically; the 
governing equation ((2.26) with y1 = 0 and E = 0) is 
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with h 2  = r - 1. Changing the independent variables in each half-plane to z 3 e-lvl in 
(3.2) gives 

(3.3) 
1 

r - 1  
k2 - -) y 2  = 0, 2 z w2zz  + ZW2z + 

whose solution is (Kamke 1951) 

Z 

r - 1)c r - 1  (3.4) 

where A is the arbitrary infinitesimal amplitude of the perturbation and J ,  the Bessel 
function of the first kind of order v. Requiring that y2 be continuous at the front 
(y = 0; z = 1) and using the symmetry of 1412 at the origin, we find c as the root of 
the transcendental equation 

vJ,(a) - aJ,+l(a) = 0; a = 2(c(r - I))-’”. (3.5) 

We notice first that the dynamics of the vortical wave, as that of the mean flow, 
changes continuously from e = 0 to, and including, E = 4. This will also be the case 
when a second active layer is introduced, permitting us to identify QG dynamics, and 
to extrapolate the insight derived from stability theorems derived in the QG model 
to the outcropping shallow-water model. 

Given a wavenumber, we can now predict the type of baroclinic instability likely 
to occur in the two-layer model of figure 1 ; at the long-wave end, the vortical waves 
of the upper- and lower-layer models have similar frequencies (figure 3 4  and we can 
therefore expect a QG baroclinic instability for all E .  At higher wavenumber, when 
the frequency of the upper-layer gravity modes crosses zero and becomes positive, a 
resonant interaction with lower-layer vortical modes becomes possible. This short- 
wave interaction can occur only for the outcropping front and is ageostrophic, and 
thus is not present in the QG system. 

We observe that more than one lower-layer vortical mode has the potential to 
resonate with the upper-layer modes. Sakai (1988) found that the modes most likely 
to interact are the ones having similar spatial structure. We thus expect the gravest 
lower-layer vortical mode to resonate with the upper-layer vortical mode (compare 
figures 40-c and 4e-g). In the case of the outcropping front the upper-layer gravity 
mode has a structure different from the lower-layer vortical modes (figures 4d and 
4g,h) suggesting that it may be able to interact with more than a single mode. The 
next section confirms these predictions. 

4. Instability of the 2-layer model 
The growth-rate curves of the instabilities present in the 2-layer model (figure 5) 

confirm the predictions of the previous section. A long-wave instability exists for all 
e, and changes continuously as a function of e while short-wave instabilities can be 
found in the intersecting front case only. 

4.1. Long-wave quasi-geostrophic instability 
The long-wave instability is found for all e and is therefore a Q G  instability, that 
is an interaction of two vortical modes; in our model, the upper-layer vortical 
mode resonates with a lower-layer one. The structure of the unstable modes (figure 6) 
changes continuously with E and closely resembles the stable 14-layer modes (figure 4). 
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FIGURE 5. Growth rates of the instabilities present in the 2-layer model, r = 4. For all values 
of E ,  the model exhibits the long-wave (QG) baroclinic instability. In addition, an ageostrophic 
vortical-gravity wave instability exists for the outcropping front. x denotes the locations where the 
frequency of the upper-layer gravity-wave modes becomes positive and can thus resonate with the 
lower-layer vortical modes. The growth rate is non-dimensionalized with Uo/& = E/f,k with kd. 
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We observe that in all the cases only the gravest lower-layer vortical mode resonates, 
which can be explained by the similarity of its structure with that of the upper-layer 
mode (figures 4c and 4g). Also, the ratio of depth-weighted pressures, y l / ( ( r  - 1)y& 
is 0(1), signifying that the perturbation energy is of the same order of magnitude in 
both layers. 

FIGURE 6. Structure of the eigenmodes of the 2-layer instabilities corresponding to the most unstable 
wave of figure 5. Solid and broken lines denote the real and imaginary parts respectively. The 
amplitudes of the eigenmodes are different for each case but the ratio of WI to 1412 is preserved. 
Notice the similarities with the 1 ;-layer eigenmodes (figure 4). 
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5 

Depth ratio, Y 
10 

FIGURE 7. Logarithmic plot of the unstable modes maximum growth rate as a function of r = H T / H .  
The top three curves are the maximum growth rates for the long-wave instability and the lower 
curve is for the short-wave instability. 

The change in the maximum growth rate as a function of the depth ratio, r ,  is 
similar for all E (figure 7), with a decay rate varying from r-0.78 for QG to r-0.83 for 
E = 4. 

4.2. The k --+ 0 limit 
In the limit k -+. 0, the dimensional growth-rate of a baroclinic instability for any 
two-layer, shallow-water model with a jet of finite horizontal extent confined in the 
upper layer is (G. R. Flier], personal communication, see also KPS) 

This is in good agreement with the growth rates displayed in figure 5 for all E. 

Also, in this limit, the energetics of the instability can be found analytically using 
an expansion in the wavenumber k .  The energy transfer equation has been considered 
in detail in KPS, and except for minor details is identical to the one in our study. 
Their equation (4.33) becomes using our scaling 

where € is the non-dimensional perturbation energy 

d = i ( h ,  (u; + v:) + h, (u; + u:> + (ytl - W 2 l 2  + 2 i i l U l ( y t l  - w*)), (4.3) 

and angle brackets denoting an average over an along-front wavelength. The last 
term of (4.3), a term that can potentially be negative (Ripa 1983; Hayashi & Young 
1987), is, to first order in k ,  identically zero when integrated over the whole domain. 
The two terms on the right-hand side of (4.2) are the barotropic and baroclinic energy 
conversion terms respectively (KPS). An interesting result is that these terms are of 
equal magnitude for all e, although the instability we observe requires the presence 
of a second active layer (i.e. is baroclinic). It suggests that the energetics of the 
instability alone cannot be used to differentiate between barotropic and baroclinic 
instabilities. 

4.3. Short-wave ageostrophic instabilitji 
Short-wave instabilities exist only for the intersecting front ( E  = 4). We analyse only 
the longest ones since the others are similar in properties and the application of the 
shallow-water approximation is not strictly valid when k - &/B. 
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The instabilities are surface trapped, with y l / ( ( r  - 1)y2) of O(O.01) (figure 6). The 
growth rate is smaller than the long-wave instability by about 60%. The unstable 
eigenmodes are reminiscent of the upper-1 +-layer gravity mode and lower-1 :-layer 
vortical mode of figures 4(c, d )  and 4(g, h). The instability occurs very close to the 
wavenumber ( k )  where the frequency of the 1:-layer gravity modes becomes positive 
(denoted by x in figure 5 where only the first two are shown), making it possible 
for an upper-layer gravity mode to resonate with a lower-layer vortical mode. The 
resonance is not isolated to the gravest lower-layer mode: the side lobes in the 
growth-rate curves (figure 5 )  are due to resonant interaction with other lower-layer 
vortical modes. As seen in figure 6, two different lower-layer vortical modes interact 
with the upper-layer gravity mode for k = 3.03 and k = 3.12, both of which are part 
of the first short-wave instability curve (e.g. the slight ‘knee’ in the DR near k = 3 
in figure 5 ) .  We conclude that the short-wave instabilities are ageostrophic, resulting 
from a resonance between gravity and vortical modes. 

We have shown that an extension of the QG instability exists at the intersecting 
front. A necessary condition for the existence of a baroclinic instability in the QG 
model (the Charney-Stern theorem) is that the PV gradient reverses between the 
upper and lower layers. In our case for all E. < 8, 

qly = 6(y)(q12 - 411) > 0, (4.4) 

while in the lower layer, 

The case f = ,/? is subtle. The mean flow, apparently, does not satisfy the condition 
for instability, as the upper layer is of constant PV (qll). This has led numerous 
previous authors (e.g. KPS; Sakai 1988; Barth 1989) to interpret the long-wave 
instability of the intersecting front as ageostrophic, i.e. requiring dynamics not 
present in QG. However, in our model, since the intersecting front is found by taking 
the regular limit H12 -+ 0, the upper-layer PV jump becomes infinite, still satisfying 
the reversal, and thus confirming the QG nature of the instability. The situation is 
similar to the continuously stratified Eady model, where the PV gradient occurs on 
the top and bottom boundaries (Bretherton 1966~).  The upper-layer jump in PV in 
the intersecting front case provides the gradient which supports the vortical wave in 
the upper layer (9 3.1). The potential of interpreting shallow water instabilities from 
insight derived in the Q G  framework is not limited to baroclinic instability, as we 
show in the next section. 

5. Application to a barotropic shear flow 
In the previous sections we have demonstrated that the Charney-Stern theorem, 

namely that the reversal of vertical PV gradient is a necessary condition for instability, 
is useful in predicting the instability of an intersecting shallow-water front, where the 
upper-layer PV gradient is isolated at the intersection point. Similarly, we can expect 
in barotropic flows, such as that investigated by Griffiths et al. (1982, hereafter GKS, 
see figure Sa), that the Rayleigh-Kuo theorem, namely that the horizontal PV gradient 
must reverse for instability to occur, will be satisfied by the flow when the intersection 
points are taken into account. The instability is also quasi-geostrophic in nature, in 
contrast to previous interpretations (e.g. Killworth 1983 ; GKS). 
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FIGURE 8. ( a )  The shallow-water model studied by Griffiths et al. (1982) and ( b )  its QG analogue. 
The QG solution has similar growth rates and structure to that of GKS’s model when the PV jump 
across the front is such that the maximum current velocity (Uo),  length (& = (g’H)’/*/f) and depth 
( H )  scales are the same. 

In GKS, a long-wave instability is observed in a 1;-layer shallow-water model of a 
double front (intersecting in two places) with constant PV. We develop a simple QG 
analogue to the shallow-water model of GKS (figure 8b) which we solve analytically 
(following Nakamura 1993). The upper layer is divided into three regions of constant 
PV with the outer two having the same PV in order to preserve the symmetry found 
in GKS. Assuming geostrophy, the dimensional mean flow is 

\ , -, 

t exp(-(y - -L)/%) for L < Y 

where 

UO = ;H%(ql - q 2 )  (1 - exp(-2L/&)) and & = (g’H)‘/2/f, 
are the maximum speed of the flow and the radius of deformation. The potential 
vorticity gradient, 

satisfies the necessary condition for normal-mode instability. Solving for a normal- 
mode perturbation, y = Y (y) + Re[y(y) exp(ik(x - ct)] ,  the perturbation-PV conser- 
vation equation is 

whose solutions are exponentials with an e-folding length p-’. The matching condi- 
tions at the PV fronts require continuity in the along-front velocity (geostrophic and 
ageostrophic), implying that both y and 

(u1-c)-+ f + -  y 
dy dY ( 2 )  

are continuous across the fronts (Nakamura 1993). The problem is reduced to solving 
a quadratic equation for c. 

The growth rate, its dependence on the current width, L (figure 9), and the structure 
and symmetries of the eigenmodes (not shown) are all similar to those found by GKS 
for the case of a constant-PV front (compare figure 9 here with their figures 5 and 6 ) .  
We thus conclude that the instability studied by GKS is a shallow-water extension 
of the QG instability arising from a resonant interaction of two vortical modes. We 
emphasize that in order for the QG model to approximate well the shallow-water 
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FIGURE 9. The growth rate of the long-wave instability as a function of the wavenumber k for 
currents with three different widths ( L ) .  The growth rate is non-dimensionalized with UO/&, k and 
L with &. 

results, the depth, length and velocity scales should be matched, not the actual PV 
distribution, which is different in the two models. 

The short-wave ageostrophic instabilities of the GKS profile were studied by 
Hayashi & Young (1987) for the case of zero PV. They found instabilities due to 
resonance between the QG modes and ageostrophic gravity waves (their figure 2). 
Their growth-rate curves for the barotropic instabilities are strikingly similar to the 
baroclinic growth-rate curves of figure 5 here; besides the long-wave instability curve, 
they find several short-wave instabilities whose growth rates decrease with k .  

Killworth (1983) found a long-wave instability in a 1;-layer shallow-water model of 
an intersecting front, when the PV gradient on the south side of the front was negative 
(i.e. figure 2a with HI* = 0 and dqll /ay c 0). Interpretation of the intersecting point 
as a &function in PV gradient supplies the reversal of PV needed to satisfy the 
Rayleigh-Kuo theorem, again making it possible to interpret this instability in the 
context of the QG dynamics, in contrast to Killworth’s interpretation. 

6. Discussion and conclusions 
We have found, in both baroclinic and barotropic shear flows, that long-wave 

instabilities, previously believed to involve dynamics not present in QG flows, are 
in effect extensions of QG instabilities. The key point, long realized in continuously 
stratified QG flows, is the connection between density and PV fronts. This connection 
extends the physical insight of the stability of shear flows from QG to shallow water. 

Observation of Gulf-Stream meanders (Watts & Johns 1982; Tracey & Watts 
1986) and of coastal upwelling regions (e.g. Barth 1994 and references therein) have 
found both long- and short-wave instabilities. Also, while the long-wave instabilities 
are observed to extend throughout the fluid, the short-wave instabilities are surface 
trapped (Barth 1994). Both aspects are captured by the simple intersecting model 
of KPS whose analysis we have extended here. The growth rate of the long-wave 
instabilities is of similar magnitude to those observed (for a detailed comparison 
with instabilities of the Gulf Stream see KPS). However, in contrast to our findings, 
in a continuously stratified horizontally bounded model, Barth (1994) finds that the 
short-wave instability grows faster than the long-wave one while Paldor & Ghil(l991) 
obtained the same result for a two-layer shallow-water model of a coastal front. 
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Two-dimensional continuously stratified primitive equation models (Stone 1970; 
Nakamura 1988) have been found to support both a long-wave Q G  instability and 
a short-wave surface-trapped vortical-gravity wave interaction instability that are 
connected to the presence of critical levels, where the governing equations encounter 
singularities. As was pointed out by Bretherton (1966b), critical levels are not present 
in layer models, but the similarities between the instabilities found here and those 
found in the continuously stratified fluid suggests that the physics underlying the 
instabilities are the same. 

Sakai ( 1988) predicted the existence of vortical-gravity wave interaction in the 
KPS profile found here, but mistook the nature of the instability found in KPS. His 
conjecture that the instabilities can be identified using momentum analysis is limited 
to cases where the QG and shallow-water mean profiles are identical in their PV 
distribution. 

Our results suggest that the quasi-geostrophic approximation may be more appli- 
cable to frontal problems than previously thought. For example, studies of the Gulf 
Stream using contour dynamics (Pratt & Stern 1986; Meacham 1991) where the fluid 
is divided into regions of constant PV, may be more realistic than previously realized. 
This is encouraging because of the relative simplicity of QG theory. When QG theory 
is used, the PV distribution should be such that the length, height, and velocity scales 
match those of the flow of interest; the actual values of the PV may be different. 

On the other hand, we expect that for unstable fronts, the nonlinear evolution will 
differ between the QG and shallow-water approximation. For example, differences 
are to be expected in the evolution of mesoscale eddies. While the QG approximation 
does not discriminate between cyclones and anti-cyclones, the latter are favoured in 
the shallow-water approximation (and in observations). 
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M. Kawase first pointed out to us the analogy between an intersecting front and a 
PV front. E. Elliott and L. Landrum are aknowledged for comments on an early 
manuscript. E. B. is supported by the University of Washington Graduate School 
Fund and a National Science Foundation Young Investigator Award to L. T., and 
L.T. by the Office of Naval Research Young Investigator Award. N.P. aknowledges 
the support provided by the Basic Research Foundation of the Israel Academy of 
Sciences to the Hebrew University of Jerusalem. 

Appendix A. Method of solution 
The method of solution is as follows: we map the infinite domain y = (-00,co) to 

two finite domains U = (0,l)  using the mean flow as the new independent variable 
and using the monotonicity of the mean flow in each half of the domain (2.16): 

Thus y = 0 is mapped to U = 1 and y = k co to U = 0. In each half of the domain 
the variables are expanded in Frobenius series (it is easy to show that they all have 
the same index y j ) :  
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where 8 = u1,v1,y1 and 1p2. Substituting this form of solution into equations (2.23)- 
(2.26) results in the following matrix equation for the coefficients: 

-€C 1 k2€C -1 0 0 k a j ( n + Y j ) )  1 ( tE ) f a j ( n  + y j )  k2 -Qj  Qi 
0 0 F1 1 -e2k2c2 V1,n 

-€ Taj€ 0 0 

where 
F1 = ( r Q j  - 1) ( ( Y j  + n)2 - k2/Q,) + e2k2c2 - 1, 
F2 = f a je (y j  + n)(yj + n - 1) f k2e/aj - l/c, 

and where the upper (lower) sign is used for the south, j = 1, (north, j = 2) side of 
the front. The variables are the same as defined in 5 2  and 53. Solving with n = 0 
(and zero right-hand side) provides the indicia1 equation 

k2 rQj(1 - e2c2k2))  = o, 
(Yj - E) (Yj - QI - ( rQj  - 1) 

Only the roots with positive real parts belong to solutions that are well behaved at 
the poles. Thus, on either side of the PV front, every variable is a sum of two series. 

It can be shown (taking n -+ 00) that for the northern ( j  = 2 )  series to converge at 
the front (where U = 1) €a2 < 1 or E < 0.632 (the southern series converges for all 
e < 8). The convergence at the front is also constrained to rQj - 1 > €aj, so that 
convergence becomes a problem for very shallow lower layers ( r  + 1). In cases where 
the series converges at the front, we use the boundary conditions at the front and a 
zero-finder to solve for the phase speed c and the eigenmodes. When the series fails 
to converge at the front, we use the series to guide the solution out of the singularity 
(where U = 0) and shoot from there to the front. Stable and unstable modes are 
characterized by real and complex phase speeds, respectively. 

As an additional check of the solutions we used the relation between the pseudo- 
energy and pseudo-momentum, E = cM (see Appendix B). 

Appendix B 
We show here for the profile first investigated by Williams (1991) (figure 2a), that 

the pseudo-momentum cannot, in general, be used to differentiate between gravity 
and vortical modes. In order to do it we show that a vortical wave has a non-zero 
contribution from the ‘gravity-wave’ term in the pseudo-momentum. 

Using the same notation as for the two-layer case, the linearized perturbation 
equations are 

where 81 = vl/ik. 
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These equations can be reduced to a second-order system of ODES with two 
unknowns where c is the eigenvalue. The boundary conditions are that all the 
perturbation amplitudes (except u1) are continuous at y = 0, and that all perturbation 
variables vanish as y + +a. 

E.  Boss, N. Paldor and L. Thompson 

The dimensional pseudo-momentum and pseudo-energy are (Hayashi & Young 
1987) 

and 

E = l: ;hl((u:) + (u ; ) )  +t i l (h lu l )  + ig’(h:) - $11&,(q2)dy, (B 5 )  

where angle brackets denote averages over an along-front wavelength, q is given by 
(8, + U&)q = u and qy is the mean flow PV gradient. In our case ijy = 6(y)*(q12-q11), 
so that the contribution of the second term in the pseudo-momentum comes from a 
single point (y = 0). The first term of the pseudo-momentum is the ‘gravity-wave’ 
contribution term according to Sakai (1988). We argued in $4 that the only mode 
present in Williams’ profile is a vortical wave. We will show that for e > 0 this mode 
contributes to a non-zero ‘gravity-wave’ term of the pseudo-momentum. In addition, 
E and M satisfy 

E = c M ,  (B 6 )  
which we used as a check for the stable modes found. For unstable modes E = M = 0 
(Hayashi & Young 1987) and the above condition is trivially satisfied. 

Using the perturbation expansion derived in Williams (1991) for small f (0 = 
O ( O )  + fO(’) + ...) with 

~j Q j  , p .  J -  = (k2  + Q ~ ) ” ~ ,  y j  = aj  +p i ,  
we have to first order in c 

and 

Using this expansion, the ‘gravity-wave’ term of the non-dimensional pseudo- 
momentum is 

which has a positive, non-zero O ( c )  term. 
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Since this integral is always zero for QG flows, Sakai (1988) interpreted it as being 
the gravity wave contribution to the pseudo-momentum. Here we proved that it can 
be non-zero for a shallow-water vortical wave. 

The reason why Sakai (1988) was able to use the pseudo-momentum to distinguish 
between the gravity and vortical modes is that the PV distribution (and thus the 
mean-flow geometry) was the same in both his model and its QG limit. Here, 
however, the PV within the layers changes with 6 (figure 2), making the structure of 
the vortical wave in the shallow-water model different from its QG limit. 
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